Blind Deblurring Using Internal Patch Recurrence
نویسندگان
چکیده
Recurrence of small image patches across different scales of a natural image has been previously used for solving ill-posed problems (e.g., superresolution from a single image). In this paper we show how this multi-scale property can also be used for “blind-deblurring”, namely, removal of an unknown blur from a blurry image. While patches repeat ‘as is’ across scales in a sharp natural image, this cross-scale recurrence significantly diminishes in blurry images. We exploit these deviations from ideal patch recurrence as a cue for recovering the underlying (unknown) blur kernel. More specifically, we look for the blur kernel k, such that if its effect is “undone” (if the blurry image is deconvolved with k), the patch similarity across scales of the image will be maximized. We report extensive experimental evaluations, which indicate that our approach compares favorably to state-of-the-art blind deblurring methods, and in particular, is more robust than them.
منابع مشابه
Blind Deblurring Using Internal Patch Recurrence: Supplamentary Material
1. We discuss the mapping between the error-ratio measure computed with the nonblind deblurring algorithm of Levin et al. [11] and the error-ratio measure computed with the nonblind-deblurring method of Zoran and Weiss [22]. 2. We explain why down-sampling an image using a sinc kernel has an effect of aliasing-aware sharpening. The error-ratio measure r (Eq. (15) in the paper), which is standar...
متن کاملBlind Image Deblurring via Reweighted Graph Total Variation
Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: i) estimate a blur kernel from the blurry image, and ii) given estimated blur kernel, de-convolve blurry input to restore the target image. In this paper, by interpreting an image patch as a signal on a weighted graph, we first argue that a skelet...
متن کاملGraph-Based Blind Image Deblurring From a Single Photograph
Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: i) estimate a blur kernel from the blurry image, and ii) given estimated blur kernel, deconvolve blurry input to restore the target image. In this paper, we propose a graph-based blind image deblurring algorithm by interpreting an image patch as a...
متن کاملPatch Mosaic for Fast Motion Deblurring
This paper proposes using a mosaic image patches composed of the most informative edges found in the original blurry image for the purpose of estimating a motion blur kernel with minimum computational cost. To select these patches we develop a new image analysis tool to efficiently locate informative patches we call the informative-edge map. The combination of patch mosaic and informative patch...
متن کاملBlind image deblurring via coupled sparse representation
The problem of blind image deblurring is more challenging than that of non-blind image deblurring, due to the lack of knowledge about the point spread function in the imaging process. In this paper, a learningbased method of estimating blur kernel under the ‘0 regularization sparsity constraint is proposed for blind image deblurring. Specifically, we model the patch-based matching between the b...
متن کامل